
Journal of Engineering for Industry, ASME, New York, NY, Vol. 118, No. 1, 1996, pp. 37-44. 
 
 

SPREAD SHEET MODEL OF CONTINUOUS CASTING 
 
 

Brian G. Thomas and Bryant Ho  
 

University of Illinois at Urbana-Champaign  
Department of Mechanical and Industrial Engineering 

1206 W. Green Street, 
Urbana, IL  61801 

 
 
 

Abstract 
 

Spreadsheet programs, such as Microsoft Excel, Informix WINGZ, and Lotus 123 provide a 
framework for very fast and easy development of simple engineering models.  The present paper 
describes a model of the continuous casting process that has been developed using a spreadsheet 
program, Microsoft Excel, running on a Macintosh II personal computer.  The model consists of 
two-dimensional (2-D) steady-state finite-difference heat conduction calculations within a 
continuous casting mold coupled to a one-dimensional (1-D) transient solidification heat transfer 
model of the solidifying shell.  The model structure and equations are described and the model 
predictions are compared with previous solutions.  Practical examples using the model are 
discussed and sample results are provided.  Spreadsheet programs running on fast personal 
computers are capable of relatively complex calculations that would require extensive effort 
using conventional programming languages.   
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Introduction 
 
Mathematical models can be used to gain valuable insight into complex process phenomena.  
For example, in the continuous casting process, the temperature history of the solidifying steel 
shell is very important to the ultimate quality of the product (Mahapatra et al., 1991).  Heat 
transfer across the interface between the solidifying steel shell and the copper mold controls this 
temperature distribution (Jenkins et al., 1994).  Defects have been linked to mold temperature 
variations (Jenkins et al., 1994) and the position of defects beneath the shell surface corresponds 
to the temperature when they were created (Szekely et al, 1988).  A mathematical model of heat 
conduction across the shell, interface, and mold, based on finite difference or finite element 
methods, is a useful tool to understand and solve these problems (Mahapatra et. Al. 1991; 
Szekely et al., 1988). 
 
To develop models such as this, sophisticated computer programs are usually written in a 
compiled language such as FORTRAN.  These programs require significant effort to create, 
modify, and maintain.  Partly because of this complexity, most previous heat flow models of 
continuous casting uncouple the calculation of temperature in the mold and shell using separate 
programs.  Heat transfer across the mold / shell interface is calibrated with experimental 
measurements and transferred between programs by hand (Mahapatra et al, 1991; Szekely et al., 
1988).   
  
A comprehensive system of finite element models of fluid flow, heat transfer, and stress are 
being developed to understand and investigate the formation of defects in the mold region of 
continuous steel slab casters (Thomas, 1989).  These models include the effects of mold 
distortion, the influence of fluid flow in the liquid pool on solidification of the shell, and 
coupling between shrinkage of the shell and the reduction of heat transfer across the interface 
due to air gap formation.  Calibrating these models requires program modifications and 
numerical experiments that are expensive, time consuming and tedious.  To speed up this testing, 
simplified models were sought, that would be easy to create and modify.  These simple models 
would serve many other purposes also. 
 
The present work was undertaken to develop a fast, simple, and flexible model of two-
dimensional (2-D) steady-state heat conduction within the mold, coupled with a one-dimensional 
(1-D) transient heat flow model of solidification of the steel shell, as it moves down through the 
mold.  This paper describes the formulation of this model, which has been implemented using 
commercial spreadsheet programs (Microsoft EXCEL and Informix WINGZ) on a MacIntosh II 
personal computer. 
 

Model Formulation 
 
Figure 1 shows a schematic of the continuous casting process.  Metal flows via gravity from a 
holding tundish down through a submerged entry nozzle into a mold cavity.  The liquid steel 
solidifies against the four walls of the water-cooled copper mold, and forms a steel shell that acts 
as a container for the liquid as it is withdrawn continuously from the mold bottom.  Mold powder 
is added to the free surface of the liquid steel, and melts into a flux which flows between the 
solid steel shell and the mold wall, where it acts as a lubricant.  This flux controls heat flow 
across the interface according to its thickness and thermal properties.  Calculating this heat flow, 
and the resulting temperature distribution in the mold and steel shell, is the objective of the 
present model.    
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Construction of a usable spread sheet model begins with a top section, which contains the values 
of input variables and constants, with appropriate labels (including units) in the adjoining cells.  
The lower portion of the spread sheet contains columns of cell equations, which are oriented in a 
logical manner with an appropriate title above each column.  Cell equations are constructed 
using the input variable cells in the top section.  This format is important to allow for easy 
parametric investigation.  Simply changing a single number in the top section enables complete 
recalculation of the spread sheet model under the new condition. 
 
Figure 2 presents the structure of the spreadsheet model and its typical contents.  Figure 2 a) 
schematically illustrates the sections that make up the spreadsheet and indicates the letters of the 
figures that detail typical contents of the cells in each section.  Figure 2 shows that the 
spreadsheet looks similar to the continuous casting process being simulated.  The calculated 
temperatures in the mold and steel are displayed in rectangular sections where they would be 
expected.  As detailed in Figure 2 c), they are separated by a column of cells representing the 
interface between the mold and shell.  A column of cells containing the mold cooling water 
temperatures is found on the left side of the mold.  This natural format, which is possible for any 
model with 2-D results, greatly facilitates creation of the spreadsheet and examination of the 
results. 
 
Copper Mold Model 
 
Two dimensional, steady state temperatures within a rectangular section through the mold were 
calculated by solving: 
 

 k ( ∂2T
∂x2  + 

∂2T
∂y2  ) = 0 (1) 

 
Each cell in the mold region of the spreadsheet is treated as a node in a finite difference 
discretization of this equation.  This produces classic equations for the temperature within each 
interior cell as a function of the temperatures of the adjacent cells (Minkowycz et. al. 1988) : 
 

 Tcell = 
TW ∆y2 + TE ∆y2 + TS ∆x2 + TN ∆x2

2(∆y2 + ∆x2)   (2) 

 
The standard notation used for the subscripts that describe the relative position of the adjacent 
cells is given in Figure 3. 
 
Equations for the cells comprising the mold boundaries are given in Appendix I.  It is easy to 
modify and copy these cell equations around in the spreadsheet in order to make changes to the 
boundary conditions, lengthen the mold, or change the mesh size as desired.  Results are equally 
easy to visualize, understand, and modify because each cell contains both the nodal equation and 
its calculated temperature.  Figure 2 c) shows typical results of mold cell temperatures.   
 
Input variables and constants that are used throughout the spreadsheet, are stored once in the top 
region of the spreadsheet, shown in Figure 2 b).  This data includes the casting conditions, 
thermal properties of the mold and steel materials, and mesh and time step parameters.   
 
Solution Methodology: 
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The only solution method provided by most spreadsheet programs is successive substitution, 
where calculation sweeps through the spreadsheet cells from left to right and top row to bottom 
row, using the most current values for the calculations at all times.  Solving for the mold 
temperatures therefore requires several complete sweeps or iterations, since the cell temperatures 
depend implicitly upon each other.  Fortunately, this simple point by point solution method is 
powerful enough to solve many problems, including the present system of finite difference 
equations. 
 
While entering cell equations into the spreadsheet, automatic calculation (updating of the cells) 
is turned off.  After creating the interior cell equation and copying it to fill the mold region, the 
temperatures of all boundary cells are fixed to constant values.  An "initial guess" solution is 
performed by selecting "calculate now" from the menu.  The calculation automatically "sweeps" 
through the spreadsheet for the requested number of iterations or until a convergence criterion is 
satisfied.  Once reasonable temperatures are achieved, the more sophisticated boundary 
conditions provided in Appendix I are implemented by changing the boundary cell equations.  
The spreadsheet thus evolves, as the model "programming" and "execution" stages proceed 
together.   
 
Instability of the spreadsheet calculation is easily spotted by watching the cells update.  Cells 
with unreasonable or unstable equations exhibit drastic temperature oscillations, which 
propagate to the surrounding neighbors.  When this happens, calculations are immediately 
stopped and the "bad" cells are overwritten with temperatures from other "good" cells in the 
spreadsheet.  After the bug is found and corrected, calculation is restarted.   
 
The calculations tend to become less stable as the boundary conditions are changed from fixed 
temperature to convection coefficient to specified heat flux.  The coupling between the cells in 
the vertical direction also makes convergence more difficult.  Thus, a 1-D heat flow relationship 
was used for cells below the upper “meniscus region” of the mold, where axial conduction is not 
very important.  These optional cell equations are given in Appendix I. Eqs. 2, 4, and 6. 
 
Convergence is usually steady but can be slow, so iterations were continued until a strict 
criterion was met: the maximum temperature change in any cell must be less than 0.02 ˚C 
between successive iterations.  The mold model requires the most execution time, typically 
needing 50 iterations or 600 CPU s for 816 cells (6 x 136 grid) using Microsoft Excel 3.0 on a 
MacIntosh II.  Execution time increases roughly linearly with the number of cells. 
 
Steel Shell Solidification Model 
 
To model solidification and temperature of the steel shell as it moves down through the mold, an 
enthalpy formulation of the transient 1-D heat conduction equation is solved: 
 

 ρ 
∂H
∂t    = k 

∂2T
∂x2  (3) 

 
Using a simple explicit time stepping algorithm and a 1-D finite difference discretization, the 
enthalpy of a typical interior node is described in terms of its enthalpy at the previous time step 
(found in the cell above) as : 
  

 Hcell = HN + 
kΔt

ρΔx2 (TNE - 2 TN + TNW)  (4) 
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This equation requires the previously calculated temperatures of this node and its neighbors at 
the previous time step.  A simple relationship, shown in Figure 4, was used to relate temperature 
and enthalpy, assuming a unique freezing temperature and constant Cp.  Using this relationship, 
a cell temperature can be calculated from its enthalpy in a single unified expression: 
 

 Tcell = min [Hcell
Cp

 , max {
Hcell - Lf

Cp
 , Tsol}] (5) 

 
This temperature can only be calculated after the enthalpy is known.  Thus, it is easier, and 
computationally more efficient, to construct the spreadsheet if the enthalpy of each node is 
calculated and stored completely within its own single cell.  This can be accomplished by 
substituting Eq. 5 three times into Eq. 4, to produce the long, but straight forward equation given 
in Appendix I Eq. 12.  The advantage is a unified "enthalpy section" of the spreadsheet where the 
calculations for each node depend only upon cell values found in the row above, so are stable.   
 
To present the results, the temperature of each enthalpy cell is recalculated in a single 
corresponding temperature cell using Eq. 5 (or Equation 14 in Appendix I).  For legibility, this 
equation (and its result) is stored in a separate temperature section of the spreadsheet, created 
adjacent to the mold section, as shown in Figure 2 c).  The enthalpy section is stored further 
away and typical results are shown in Figure 2 h).  
 
For initial conditions, the top row of cells are simply set to the pour temperature defined in the 
input part of the spreadsheet.  The cell equations for both enthalpy and temperature for all types 
of nodes required for the continuous casting simulation are given in Appendix I. 
 
Since this model is explicit, no iteration is required.  Thus, the spreadsheet is converged after the 
first iteration, if the shell is uncoupled from the mold.  For the same number of cells, (ie. mesh 
size) the solidification model converges faster than the mold model.  There is, however, a well-
known theoretical restriction on the time step and mesh size combinations possible to achieve 
stable convergence for linear problems (Minkowycz et al. 1988): 

  

 
2 0.5

p

k t
C xρ

Δ
<

Δ   (6) 
 
The time step size was restricted even more for the nonlinear solidification problem at hand.  
The mesh employed for the solidification model depends upon the purpose of the model.  When 
the mold region is of interest, a fine (2 mm) spacing is used between nodes, requiring a small 
time step.  However, there is no need to create cells for the entire slab section, which is mainly 
liquid.  When the later stages of solidification below the mold, or the final point of solidification 
is important, all of the liquid must be modeled, but a courser node spacing and larger time step 
can be used.    
 
Coupling 
 
The mold and shell models are useful tools when run separately, but are even more powerful 
when coupled together.  Coupling between the models is achieved by letting the mesh size of the 
mold in the casting direction, Δy, depend on the time step size used in the steel, Δt, and the 
casting speed, v: 
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 Δy = v Δt (7) 

 
Distance below the meniscus, y, is accumulated in the same way as many other variables in the 
spreadsheet: 
 

 ycell = yN + Δy (8) 
 
In addition, heat transfer between the mold and steel is defined by: 
 

 q" = hgap (Tshell surface - Tmold hot face) (9) 
 
Various functions for hgap are being explored.  When simulating a slice through the wide face, 
liquid pressure ensures good contact between the shell and mold and prevents any air gaps due to 
shrinkage.  Heat transfer is governed by conduction and radiation across the transparent powder 
layers.  Figure 2 g) shows the results obtained with the following equation, which was used to 
produce the typical results given in the rest of Figure 2: 

 

 hgap =   1/ ( 
1

hmold/flux contact
   + 

Δxair
kair

   +  
Δxflux
kflux

  + 
1

hflux/shell contact
   )  

  +  σ ε (T2shell surface + T2mold hot face) (Tshell surface + Tmold hot face) (10) 
 
The solution algorithm was found to produce stable results for this coupled simulation, but 
depends upon starting from a reasonable guess.  This is best achieved by modifying a previously 
converged spreadsheet. 
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Model Verification 
 

The models were verified independently by uncoupling them from each other by simply 
changing the equations in the boundary cells representing the mold and shell surfaces.  Model 
predictions were compared successfully with analytical solutions from Carslaw and Jaeger 
(1959) employing fixed temperature boundary conditions, to verify their internal consistency.   
 
The solidification model was then further verified by using it to reproduce predictions of 
temperature and shell thickness from two previously-published 1-D transient models of 
continuous casting.  This required fixing the heat flux leaving the steel surface cells to prescribed 
values.  This was accomplished using a heat flux versus time "look-up table", shown in Figure 
2f), to define q" in Eq. 11 in Appendix I.  Heat flux values for the cells in the spreadsheet 
column representing the interface were then based on piece-wise linear interpolation between 
pairs of points (y, q") in the look-up table: 
 

 q"cell = q"1 + 
y - y1
y2 - y1

  * (q"2 - q"1) (11) 

 
The appropriate y1 and y2 values were found automatically for the current distance, y, using the 
INDEX function and the corresponding q"1 and q"2 values were found by the VLOOKUP 
function in Excel 3.0.  This look-up table procedure provides a convenient, flexible method to 
input a variety of data into the model. 
 
The previous models used in the comparison employed an integral profile method (Hills, 1969) 
and an explicit finite difference method implemented into a FORTRAN program (Lait et al. 
1974).  Table I shows the steel property data and casting conditions used in the previous work 
and their approximation for the spreadsheet model.  Note that both the liquidus and pour 
temperatures were decreased by 61 °C in the present work in order to simultaneously satisfy the 
requirement of a unique solidification temperature and maintain a constant superheat of 20 °C.   
 
Shell thickness was inferred by assuming the solid front was positioned at the boundary between 
adjacent cells at the time each cell just cooled below the solidification temperature.  Figure 5 
compares the shell thickness profile predicted with the spreadsheet model with two results from 
previous published models of continuous casting.  The spreadsheet results are seen to fall 
between the previously published curves.  This agreement suggests that the modeling 
assumptions and procedure are reasonable.  In particular, a unique solidification temperature, 
which is attractive for low alloy steels with a narrow solidification range, can even approximate 
the solidification of a stainless steel. 

 
Model Applications 

 
The verified model can be used for many purposes.  For example, the variation in mold copper 
thickness between the inside and outside radius resulting from mold curvature affects the mold 
temperatures.  The magnitude of this effect was investigated by varying the mold thickness with 
distance down the mold, using the machine radius.  This was easy to incorporate into the model 
by inserting two new columns into the spreadsheet to calculate and store the local mold thickness 
and corresponding Δx for each row of cells. (See Figure 2 d). 
 
Boiling in the water channels is a serious potential quality problem.  The model was modified to 
check if boiling is likely under particular mold and casting conditions of interest.  This required 
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enhancing the model to improve calculation of the mold water heat transfer coefficient.  
Relationships from Burmeister (1983) were incorporated in a separate section of the spreadsheet 
to calculate hwater as a function of mold cooling water velocity and temperature, as shown in 
Figure 2 e).  Knowing the mass flow rate through each cooling water channel, Mwater, and the 
distance between channels, Wwater, from the input data section, the increase in water temperature 
as it flows up the mold was calculated: 
 

 Twater cell =  TS + 
q"mold cold face * Wwater * Δy

Mwater * Cpwater
  (12) 

 
This equation is also useful for calculating the overall increase in water temperature, for 
comparison with measurements on operating casters. 
 
Spray heat transfer was introduced below the mold by copying more cells to extend the steel 
shell downward and changing the cells containing the q" boundary condition to simulate spray 
water heat flux.  This enables the model to simulate phenomena such as reheating of the shell 
surface below the mold, which is important for designing spray water cooling systems to avoid 
surface crack formation. 
 
Another use of the model is to approximate the ideal taper of the narrow-face mold walls needed 
to match the shrinkage of the shell.  This is readily calculated in a single cell based on the 
predicted shell surface temperature at mold exit: 
 

Ideal % taper / m  =    
α  (Tsol - Tsurface node at mold exit)

 L    (13) 

 
where α is the thermal expansion coefficient of the steel and L is the effective mold length.  This 
ideal taper varies as a function of casting conditions, such as casting speed, grade, and interface 
heat transfer parameters.  Despite the tremendous simplification inherent in this equation, the 
predictions match casting operation experience quite reasonably. 
 
Finally, the model has been used to develop a better understanding of the interaction between the 
mold and the shell, (Ho, 1992).  For example, if the mold "flux", which fills most of the gap, is 
allowed to cool completely below its solidification temperature, then it becomes viscous and is 
less able to lubricate the strand.  This increases mold friction and makes problems such as 
surface cracks more likely.  Once calibrated, this phenomenon can be predicted using the model. 
 
The many input parameters to the model must be calibrated using data from casting operations, 
such as mold thermocouple measurements, mold water temperature rise, shell thicknesses from 
breakout shells, and mold powder thicknesses.  This requires significant trial and error, including 
different functions for heat flow across the interface, Eq. (10).  In future work, these calibrated 
parameters and functions can be used in the more sophisticated thermal-stress models to 
calculate temperatures, stresses, and shrinkage, including the formation of an air gap near the 
corners, and its effect on heat flow across the mold / shell interface. 
 

Discussion 
 
This spreadsheet finite difference model was very easy to create and equally easy to modify.  
This is attributed mainly to the strong correspondence between the program (finite difference 
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equations), input data, and results all being stored in the same place (the spreadsheet cells) in an 
intuitive manner.  This was achieved by ensuring that each nodal equation occupies a single cell 
in the spread sheet, which has the added advantage of better computational efficiency.  This 
benefit should apply to any two-variable problem, including both 2-D steady state and 1-D 
transient problems, as in the present example. 
 
The simplicity of this model is important because most of the uses of the model required 
modifications that were not originally anticipated.  The spreadsheet model was easier to work 
with than FORTRAN programs in this regard. 
 

Conclusions 
 
A commercial spreadsheet program, such as Excel or WINGZ on a personal computer is a 
powerful tool that can be used to develop surprisingly sophisticated mathematical models.  It 
offers the advantage over traditional compiled language programs of simplicity in all phases of 
model development, program modification, running the model and examining the results.  This is 
especially evident in heat flow calculations where each cell can represent a single node in the 
simulation.   
 
Cell equations are presented in the present paper which incorporate simple, robust numerical 
methods to calculate 2-D steady state heat conduction and 1-D transient solidification.  They are 
used to construct a coupled thermal model of the continuous casting of steel slabs, including the 
water-cooled copper mold, the solidifying steel shell, and the interface between them.  Versions 
of this model are being applied to aid in the understanding of various aspects of this process. 
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Table I  Stainless steel slab solidification test problem 
 
Input data Lait et al. 1974 Spreadsheet Model 
   
Slab size 127 x 1090 mm N/A 
Mold length, L 510 mm (effective) 510 mm 
Thermal conductivity, k 15.9 + 0.0115 T(˚C) 34 W/m K 
Specific heat, Cp 682 J/kgK 682 J/kgK 
Latent heat, Lf 272 J/g 272 J/g 
Density, ρ 7400 kg/m3 7400 kg / m3 
Solidus temp, Tsol 1399 ˚C 1399 ˚C 
Liquidus temp, Tliq 1460 ˚C 1399 ˚C 
Pour temp, Tpour 1480 ˚C 1419 ˚C 
Superheat 20 ˚C 20 ˚C 
Casting speed, v 165 mm/s 165 mm/s 
Time data N / A 0,6,10,25,40 s 
Heat flux data, q", MW/m2 q (W/m2) = 2.68 - .335 

t (s)    
 2.68, 1.86, 1.62, 1.00, 0.56 

Time step size, Δt  0.2 s 
Mesh size, Δx  2 mm 

 
 

Appendix I Cell Equations 
 

Mold Temperatures 
 

1. Interior Node (2-D) Tcell = 
TW ∆y2 + TE ∆y2 + TS ∆x2 + TN ∆x2

2(∆y2 + ∆x2)   

 

2.   (1-D) Tcell = 
1
2 (TW + TE)  

 
 Cold Face with Convection Boundary Conditions  
 

3.  (2-D) Tcell = 
TS ∆x2 + TN ∆x2 + 2TE ∆y2 + 

2hwater ∆x∆y2

k  Twater

2∆y2 + 2∆x2 + 
2hwater ∆x ∆y2

k

  

 

4.  (1-D) Tcell = 
TE + 

hwater ∆x
k  Twater

1 + 
hwater ∆x

k
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 Hot Face with Heat Flux Boundary Conditions 
 

5.  (2-D) Tcell = 
TN ∆x2 + TS ∆x2 + 2TW ∆y2 + 

2q'' ∆x∆y2

k
2∆x2 + 2∆y2   

 

6.  (1-D) Tcell = TW + 
q'' ∆x

k   

 
7. Top Row of Mold with Convection Boundary Conditions 
 

  (2-D) Tcell = 
TW ∆y2 + TE ∆y2 + 2TS ∆x2 + 

2h∞ ∆x2∆y
k  T∞

2∆y2 + 2∆x2 + 
2h∞ ∆x2∆y

k

  

 
8. Corner Cold Face Node with Convection to Ambient, h∞, and Water, hwater 
 

  Tcell = 

h∞ ∆x2∆y
k  T∞ + 

hwater ∆y2∆x
k  Twater + TE∆y2 + TS∆x2

h∞ ∆x2∆y
k  + 

hwater ∆y2∆x
k  + ∆y2 + ∆x2

  

 
9. Corner Hot Face Node with Convection to Ambient and Flux Boundary Conditions 
 

  Tcell = 

h∞ ∆x2∆y
k  T∞ + 

q"∆x∆y2

k  + TW∆y2 + TS∆x2

h∞ ∆x2∆y
k  + ∆y2 + ∆x2

  

 
Solidifying Steel Enthalpies 

10. Meniscus nodes (Top row) Hcell = Cp * Tpour + Lf * int 
⎝
⎜
⎛

⎠
⎟
⎞Tpour

Tsol
  

 

11. Surface Node  Hcell = HN + 
2k∆t
ρ∆x2  (min [HNE

Cp
, max {

HNE-Lf
Cp

, Tsol}]   

 

    - min [HN
Cp

 , max {
HN - Lf

Cp
 , Tsol}])  - 

2q"∆t
ρ∆x   

 

12. All other nodes  Hcell = HN + 
kΔt

ρΔx2 (min [HNE
Cp

, max {
HNE - Lf

Cp
, Tsol}]  

 

  - 2 min [HN
Cp

 , max {
HN - Lf

Cp
 , Tsol}] + min [HNW

Cp
 , max{

HNW - Lf
Cp

 , Tsol}]) 
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 Centerline nodes are the same as interior nodes except that HNE = HNW. 
 
Solidifying Steel Temperatures 

13. Meniscus nodes (Top row) Tcell = Tpour 
 

14. All other nodes: Tcell =  
Hcell - max (0, min [Lf, Hcell - Tsol*Cp])

Cp
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Figures 
 

 
 
Figure 1 Schematic of model domain  
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Figure 2 Spreadsheet model of continuous casting 
 

 
Figure 2 a) Overall structure 
 
 
 

 
Figure 2 b) Input data section 
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Figure 2 c) Main section of mold and shell models 
 
 

 
Figure 2 d) Mesh size definition section 
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Figure 2 e) Cooling water convection section 
 
 

 
Figure 2 f) Interfacial heat flux look - up table 
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Figure 2 g) Interfacial heat transfer section 
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Figure 2 h) Shell enthalpy section 
 
 

 
Figure 3   Subscript nomenclature used in equations to define relative position of 

cells  
       

 
Figure 4     Temperature - enthalpy relationship assumed in the solidification model 
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Figure 5 Comparison of spreadsheet model predictions with previous models. 
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Scan of actual spread-sheet page, with sections colored according to function (blue=water, 
read=h, brown=copper, yellow=solidifying steel. 


